Student Exploration: Food Chain

Directions: 1) Go to Explorelearning.com; 2) Login using your assigned user name and password. 3) Find the Food Chain Gizmo and click “Launch Gizmo” 4) Answer all questions in your notebook.

Vocabulary (define each in your notebook): consumer, ecosystem, equilibrium, food chain, population, predator, prey, producer

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)
The Food Chain Gizmo™ shows a food chain with hawks, snakes, rabbits, and grass. In this simulation, the hawks eat snakes, the snakes eat rabbits, and the rabbits eat grass.

1. **Producers** are organisms that do not need to eat other organisms to obtain energy.
 A. Which organism is a producer in this food chain?
 B. Where does the producer get its energy?

2. **Consumers** must eat other organisms for energy. Which organisms are consumers in this food chain?

Gizmo Warm-up
The SIMULATION pane of the Gizmo shows the current population, or number, of each organism in the food chain.

1. What are the current populations of each organism?
 Hawks: Snakes: Rabbits: Grass:

2. Select the BAR CHART tab, and click Play (►). What do you notice about each population as time goes by?
 If populations don’t change very much over time, the ecosystem is in equilibrium.

3. Compare the equilibrium populations of the four organisms. Why do you think populations decrease at higher levels of the food chain?

Activity A: Get the Gizmo ready: • Click Reset (◉). • Check that the BAR CHART tab is selected.

Question: **Predators** are animals that hunt other animals, called prey. How do predator and prey populations affect one another?

1. **Observe:** Run the Gizmo with several different starting conditions. You can use the + or – buttons to add or remove organisms, or you can choose Diseased from the dropdown lists.

2. **Form hypothesis:** How do you think predator and prey populations affect one another?

3. **Predict:** Based on your hypothesis, predict how changing the rabbit population will affect the other organisms at first. Write “Increase” or “Decrease” next to each “Prediction” in the table. (Draw table in notebook)

<table>
<thead>
<tr>
<th>Change</th>
<th>Grass</th>
<th>Snakes</th>
<th>Hawks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubling rabbit population</td>
<td>Prediction:</td>
<td>Prediction:</td>
<td>Prediction:</td>
</tr>
<tr>
<td></td>
<td>Result:</td>
<td>Result:</td>
<td>Result:</td>
</tr>
<tr>
<td>Halving rabbit population</td>
<td>Prediction:</td>
<td>Prediction:</td>
<td>Prediction:</td>
</tr>
<tr>
<td></td>
<td>Result:</td>
<td>Result:</td>
<td>Result:</td>
</tr>
</tbody>
</table>

4. **Test:** Add rabbits until the population is about twice as large as it was (200% of balance). Click Play, and then Pause (■) after approximately ONE month. Next to each “Result” line in the table, write “Increase” or “Decrease.” Click Reset and then halve the rabbit population (50% of balance). Record the results for this experiment in the table as well. How did doubling the rabbit population affect the rest of the organisms? How did halving the rabbit population affect the rest of the organisms?
5. **Predict**: Predict how changing the snake and hawk populations will affect the other organisms within the first month. In the tables below, write your predictions. (Draw these in your notebook)

<table>
<thead>
<tr>
<th>Change</th>
<th>Grass</th>
<th>Rabbits</th>
<th>Hawks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubling snake population</td>
<td>Prediction:</td>
<td>Prediction:</td>
<td>Prediction:</td>
</tr>
<tr>
<td></td>
<td>Result:</td>
<td>Result:</td>
<td>Result:</td>
</tr>
<tr>
<td>Halving snake population</td>
<td>Prediction:</td>
<td>Prediction:</td>
<td>Prediction:</td>
</tr>
<tr>
<td></td>
<td>Result:</td>
<td>Result:</td>
<td>Result:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change</th>
<th>Grass</th>
<th>Rabbits</th>
<th>Snakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubling hawk population</td>
<td>Prediction:</td>
<td>Prediction:</td>
<td>Prediction:</td>
</tr>
<tr>
<td></td>
<td>Result:</td>
<td>Result:</td>
<td>Result:</td>
</tr>
<tr>
<td>Halving hawk population</td>
<td>Prediction:</td>
<td>Prediction:</td>
<td>Prediction:</td>
</tr>
<tr>
<td></td>
<td>Result:</td>
<td>Result:</td>
<td>Result:</td>
</tr>
</tbody>
</table>

6. **Test**: Click **Reset**. Try each experiment with the Gizmo. Record each result after one month.
 - A. How did increasing the snakes affect the grass? Explain why:
 - B. How did increasing the hawks affect the rabbits? Explain why:

7. **Draw conclusions**: In general, what effect did removing prey have on predators? What effect did removing predators have on prey?

8. **Extend your thinking**: In North America, many top predators, such as wolves, have been driven nearly to extinction. What effect do you think this has on their main prey, deer?

Activity B:
Long-term changes
- Get the Gizmo ready:
 - Click **Reset**.
 - Select the **GRAPH** tab.

Question:
An **ecosystem** is a group of living things and their physical environment. How do ecosystems react to major disturbances?
1. **Observe**: Kill off most of the hawks using the – button, and then click **Play**. Observe the **GRAPH** for about 12 months, and then click **Pause**. What happens?
2. **Analyze**: Explain why you think the population of each organism changed the way it did. (Use extra paper if necessary.)
3. **Experiment**: Click **Reset**. Try making other changes to the ecosystem. Use the + or – buttons, or choose **Diseased** from the dropdown lists. Click **Play** and observe for at least 12 months.
4. **Summarize**: Give at least one example of each of the following:
 - A. A major disturbance that the ecosystem was able to recover completely from.
 - B. A major disturbance that caused the ecosystem to stabilize at a new equilibrium.
 - C. A major disturbance that caused the ecosystem to completely collapse.
 - D. (Challenge) A major disturbance that almost caused a total collapse, but that the ecosystem was able to recover from eventually.

List 3 Producers (If you get done earlier than everyone else, try to find the WIERDEST ones out there… you might be surprised.)

Consumers from video clip:

Decomposers from video clip: